

Il punto di vista del farmacologo

Romano Danesi Università degli Studi di Milano

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
MSD			Х		X		
Eisai			X		x	X	
AstraZeneca	X		X		X	X	
BeiGene					X		
Janssen	X		X		X		
Novartis			X		Х		
Lilly			X		X		
Incyte			х		X		
AB Science			Х				

The role of BTK in B cell proliferation

Charlotte McDonald et al. Immunology. 2021;164:722–736

Molecular interaction of covalent inhibitors with BTK

Schematic 2D diagram of zanubrutinib bound to BTK and details of the interaction with the hydrophobic pocket

Mahani NM et al. DOI: https://dx.doi.org/10.4314/bcse.v36i2.19

Kinase profiling at concentrations of $100 \times IC_{50}$ based on BTK IC₅₀

	Zanub	rutinib	Ibrutinib		
	71 nM		32 nM		
1	BLK	99.9	BLK	100.2	
2	ERBB4/HER4	99.1	BMX/ETK	99.7	
3	ТХК	98.5	ERBB4/HER4	99.5	
4	BMX/ETK	98.1	ТХК	98.8	
5	ВТК	95.1	TEC	98	
6	TEC	79.3	ВТК	97.2	
7	BRK	63.9	FGR	95.7	
8	FGR	53.1	YES/YES1	92.9	
9	EGFR	43.3	LCK	91.2	
10	LCK	40.6	ITK	84.3	
11	YES/YES1	37.1	НСК	93	
12	CSK	28.8	CSK	81	
13	STK33	23.7	EGFR	76.5	
14	BMPR2	22.6	FYN	66.9	
15	AXL	22.4	ERBB2/HER2	61.9	
16	НСК	21.9	SRMS	61	
17	PKCd	20.9	JAK3	58.7	
18	FLT3	20.5	LYN	52.3	
19	MEKK1	20.1	c-Src	46.1	
20	ІТК	19.1	FLT3	41.8	
21	MSK2/RPS6KA4	19	BRK	41.6	
22	ERN1/IRE1	17.9	ABL2/ARG	40.4	
23	MNK2	17.8	WNK1	32.5	
24	FRK/PTK5	17.8	MNK2	32.4	

Tam CS et al. Blood Cancer Journal 2023:13:141

Bologna, Aemilia Hotel, 19 ottobre 2024

AGC

CAMK

BTK inactivation kinetic parameters for ibrutinib and zanubrutinib

Compound	K_{I} (nM)	$k_{inact} (s^{-1})$	$k_{inact}\!/\!K_I\;(M^{-1}s^{-1})$
Ibrutinib	54 ± 49	0.027 ± 0.025	$\begin{array}{l} 47.7\times10^{4}\pm1.48\times10^{4}\\ 27.9\times10^{4}\pm0.08\times10^{4} \end{array}$
Zanubrutinib	126 ± 59	0.033 ± 0.013	

Molecular docking outcomes of zanubrutinib against 1Y6A region of VEGFR2 – increased cardiovascular safety

Bologna, Aemilia Hotel, 19 ottobre 2024

Zanubrutinib BTK occupancy in PBMC and in lymph nodes by dose regimens relative to those of ibrutinib

Bologna, Aemilia Hotel, 19 ottobre 2024

BTK occupancy of zanubrutinib vs ibrutinib and of zanubrutinib 160 mg BID vs. 320 mg QD (systems pharmacology model)

Srikumar Sahasranaman et al. http://doi.org/10.1182/blood-2019-129133

Zanubrutinib spares NK effector function

Mino MCL cells and NK92MI cells were co-seeded and treated with vehicle or various concentrations of BTK inhibitors

Pharmacokinetic characteristics

- Zanubrutinib PK properties were unaffected by factors including renal (estimated glomerular filtration rate ≥30 mL/min) and mild/moderate hepatic impairment (Child-Pugh class A or B)
- With appropriate dose reductions, it could be administered with moderate or strong CYP3A inhibitors.
- Zanubrutinib can be administered concurrently with proton pump inhibitors (PPI)/acid-reducing agents without restriction.
- Zanubrutinib has high volume of distribution (approximately 880 L), high AUC/IC50, and half-life of 2-4 h.
- Pharmacokinetics is not saturable

Dose-proportional increase in drug levels

Pharmacokinetics and AUIC of ibrutinib and zanubrutinib

Comparison of PK parameters of BTKi

Parameter	Ibrutinib	Acalabrutinib	Zanubrutinib
Absolute bio- availability	< 10%	25%	45–50% ^b
Half-life	4–13 h	1–2 h	2–4 h
Metabolism	Predominantly via CYP3A	Predominantly via CYP3A	Predominantly via CYP3A
Excretion	Faeces, 80%; urine, < 10%	Faeces, 84%; urine, 12%	Faeces, 87%; urine, 8%

Matt Shirley. Targeted Oncology (2022) 17:69-84

A comparative look to PK and PD

		Zanubrutinib	Ibrutinib	
	FDA-approved dose	160 mg BID or 320 mg QD	420 or 560 mg QD	
	IC ₅₀ against BTK (nM)	0.5	1.5	
	Potency of major active metabolite against BTK	Not applicable	~15 -fold less potent compared to the parent molecule	
	Half-life (hr)	~ 2 to 4	~ 4 to 6	
	Plasma protein binding (%)	~94	97.3 - 97.7	
	AUC _{0-24h} r(CV %) ng-hr/mL	160 mg BID: 2,295 (37 %) 320 mg QD: 2,180 (41 %)	420 mg QD: 707-1,159 (50 % - 72 %) 560 mg QD: 865-978 (69 % - 82 %)	
	fu AUC _{0-24hr} (nM-hr)	160 mg BID: 278 320 QD: 267	420 mg QD: 37-60 560 mg QD: 46-51	
	Plasma exposure of major active metabolite	Not applicable	1- to 2.8-fold higher than parent AUC	
	Median BTK occupancy in PBMC at trough (%)	160 mg BID: 100 320 mg QD: 100	420 mg to 820 mg QD: >90	
https://memoinoncology.com/e sh-cll/esh-cll-2022-satellite- symposium-inhibition-of- brutons-tyrosine-kinase-btk-a- key-approach-to-managing-and- treating-cll-patients/	Median BTK occupancy in lymph node at trough (%)	160 mg BID: 100 320 mg QD: 94	420 mg QD: >90	
	P-gp and brain penetration	Weak P-gp substrate Brain penetration data in patients available	Not a P-gp substrate Brain penetration data in patients available	

Bologna, Aemilia Hotel, 19 ottobre 2024

Bologna, Aemilia Hotel, 19 ottobre 2024

Detection of ctDNA mutations (C481) and evolution during zanubrutinib therapy

Piers Blombery et al. Blood Advances 2023;7:3531-3539

Bologna, Aemilia Hotel, 19 ottobre 2024

Conclusions

- Zanubrutinib is a BTK inhibitor with high selectivity and potency.
- First generation BTKi suppresses NK-cell cytotoxicity, most likely due to off-target inhibition of ITK, while zanubrutinib spares NK activity.
- Zanubrutinib has favorable pharmacokinetics.
- Multiparametric pharmacologic assessment suggests that zanubrutinib challenges the limit of second generation BTKi.